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J. Phys. A :  Math. Gen., Vol. 12, No. 2, 1979. Printed in Great Britain 

Axially gauge-covariant electrodynamics 

R Delbourgot and P Phocas-Cosmetatos!: 
+Physics Department, University of Tasmania, Hobart, Tasmania 
16 Stephanou Delta Street, Philothei, Athens, Greece 

Received 14 March 1978. in final form 27 June 1978 

Abstract. A non-perturbative gauge-covariant technique, which successfully determines 
the infrared behaviour of propagators in electrodynamics in a class of covariant gauges, is 
used to obtain the infrared behaviour in axial gauges. 

1. Introduction 

The gauge technique (Salam 1963) is proving to be a significant tool for uncovering 
certain non-perturbative properties of gauge theories. In essence, the technique relies 
upon solving the gauge identities (Delbourgo 1978) to determine a substantial 
component of the multi-meson Green functions in terms of the pure-source Green 
functions, and then to insert the ‘solutions’ into the coupled Green-function equations 
to obtain initial values of the source amplitudes and successive transverse component 
improvements which are not determined by the gauge identities themselves. In 
electrodynamics (Delbourgo and West 1977a, Delbourgo 1977) the scheme has been 
shown to provide a very efficient short cut to the infrared (and initial ultraviolet) 
behaviour (Delbourgo and West 1977b) of the charged lines in the class of covariant 
gauges specified by the gauge-fixing term (aAI2/2a. However, in so far as relativistic- 
ally covariant gauges make for complicated identities when the internal symmetry 
group is non-Abelian, the gauge technique is not easily adapted to obtain the infrared 
behaviour in Yang-Mills theory, for instance. It is preferable in that case to adhere to 
axial gauges where the identities involve no fictitious terms (Delbourgo et a1 1974, 
Kummer 1975) and are capable of solution. The purpose of this paper is to determine 
the full infrared behaviour in axial gauge electrodynamics by means of the gauge 
technique as a preliminary investigation to the more difficult non-abelian problem. 

The axial gauge is specified by the constraint n . A = 0, where n is an arbitrary 
four-vector. (Since the normalisation of n is irrelevant to the on-shell matrix elements, 
which are n -independent and relativistically covariant, one can choose n to be time-like 
and of unit length, n 2  = 1, as we subsequently do.) The bare photon propagator in 
general reads 

n,k,+n,k, n’k,k,) 1 -___ - 
n .  k ( n .  k)2 k 2 + i e  D,,(k) = ( -qFU + 

where a principal-part prescription must be taken to avoid unphysical singularities from 
the vanishing of n . k. Note that nWD,, = 0 even for the complete propagator. The 
resulting quantum corrections then lead to Green functions which depend on the 
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momentum invariants p . q, etc, as well as their n-projections p . n, q . n, etc, when one 
goes off mass-shell. Thus off -shell amplitudes are not fully relativistically covariant but 
only enjoy a limited O(3)  covariance, connected with the little group of n?. This makes 
computation perhaps more involved (Frenkel and Taylor 1976) than would be the case 
for Lorentz covariant gauges, but on the other hand the gauge identities, whether the 
symmetry group of the Lagrangian is abelian or not, assume their naive canonical form 
and this nice feature facilitates the application of the gauge technique. The method of 
solution of the identities is based upon a spectral weighting of the classical theory and 
has been detailed in an earlier paper (Delbourgo 1978); here we shall merely quote the 
relevant formulae as they apply to electrodynamics. Let A and S stand for the scalar and 
spinor propagators. When ( p  . n)’< m 2  (threshold) there are the spectral represen- 
tations$ 

and the gauge technique then supplies gratuitously the starting vertex functions 

+ 1 + p ( W, p ’  . n ) + y . npo( W2, p ’  . n )) - 

(36)  

Similar formulae can be worked out as additional photons are emitted. The expressions 
(3) can be substituted directly into the Dyson-Schwinger equations to obtain integral 
equations determining the spectral functions p. The salient points involved in comput- 
ing these p are exposed in the next two sections. Here we shall merely quote the 

P (  w, p . n) + Y . npo(w2, P . n) - P ( W  P’ . n) - Y . o p 0 ( w 2 ,  p ’  . n )  
X 

p .  n - p ’ .  n 

f If one chooses n to be space-like, the functions become O(2, 1 )  covariant instead, while if n is light-like, E(2) 
becomes the relevant group. 
$ When the Lagrangian is formally invariant under charge conjugation, with n + -n, we obtain S(p,  n )  = 
C-’S(-p, -n)C for the two-point function, which eliminates the covariant [ y  . p, y . n]. In the representation 
( 2 6 )  the order of y . n and y . p is irrelevant because p o  is taken even in W. Such representations were proved 
by Johnson (1960) in the radiation gauge, and since the proofs rely solely on rotation invariance they can be 
extended to A. = 0. Hagen (1963) has used them extensively. 
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non-perturbative answers for the ensuing propagators in the infrared limit: 

where 

tan-' b e' m tan-' ( 1 - 2 )  b 

b = [ m 2 / ( p .  n) ' -  11'". 

It is interesting that near the mass shell all non-covariant behaviour gets absorbed in the 
exponents; this represents the main result of this paper. 

The equations for p seem quite intractable away from p 2  = m 2  and we have as yet 
been unable to discover the complete solution for all p 2 .  Nevertheless, in that the 
infrared structure of Yang-Mills theory is believed to hold the key of the confinement 
mechanism for chromodynamics, we feel that an extension of our calculation to the 
non-Abelian problem ought to be possible and might shed some light on that question. 
We will leave that as a separate investigation as we suspect the problem is an order of 
magnitude more difficult. 

2. Scalar electrodynamics 

It is worth going through this case in a little detail to bring out the difficulties connected 
with the non-relativistic covariance. The same problems are inherent in the spinor case, 
but as well there occur y-matrix complications causing tricky coupled integral equa- 
tions. Such problems are absent for scalars. For ease of cakulation we shall direct n 
along the time axis so that the Green functions possess spatial rotation invariance only, 
being functions of energies and three-vector products; it is easy enough to reinstate the 
n dependence of the amplitudes in the end for more arbitrary n directions by replacing 
pa2 with ( p .  n) ' /n2 ,  etc. When n = ( 1 , O )  the only non-vanishing components of the 
photon propagator are 

Di,(k) = (Si, - kikj/ko2)/k2 

and the complete scalar propagator A(p) becomes a function of p 2  and pa2. Also in ( 3 a )  
we may then neglect the time component of r F  to all intents and purposes. This is 
because T F  is contracted against a polarisation vector or else multiplies a propagator 
which is also orthogonal to n. Thus the Dyson-Schwinger equation? for the charged 
scalar line reads 

+ In this context it i s  essential to note that the mass-shell element 6m2 or n ( m 2 ,  PO, m 2 )  is in fact independent 
of P o .  
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which may be rewritten in the form 

+$ J dkonko(p2, P O ,  W 2 ) ( p ( W 2 , p o ) + p ( W 2 , ~ o - k o ) ) ) .  ( 5 )  

In  (5) we have represented the lowest-order self-energy correction appropriate to a 
scalar of mass W in the axial gauge by 

n(P2, Po,  w2) = 1 dko nko(P2, Po,  w2). 
The difference between ( 5 )  and the corresponding equation for a covariant gauge choice 
lies in the occurrence of the spectral function p for the intermediate scalar line, which 
prevents the integration over the intermediate energy being carried out immediately. If 
we take the imaginary part of (5) carrying out our renormalizations so that finally? 

Im n( p 2 ,  po ,  W 2 )  d W 2  
W p 2 ,  Po,  m2)+ - ( p 2 - m 2 )  .n J ( p 2 -  W2)(W2-m2)  

the spectral function equation reduces to 

1 
( W 2  - m2)p( W 2 ,  po)  = - 2.n d W" dko(p( W'2, P O )  

At this stage some comments about the self-energy II have to be made. The 
singularities of the integral 

J d4k (k + io)-'[ ( p  - k )2 - m + i 0 ] - ' ~  (k i2 ) 

in the ko plane become confluent at ko = Ikl= PO - [ ( p  - k ) 2  + m2]1'2, which amounts to a 
vanishing of k 2  and [ ( p  - k ) 2  - m2] along the future light cones. This covariant pinch 
leads to 

e2 
Im n ( p )  = 7 J d4k S + ( ~ ~ ) S , [ ( P  - k12- m21(p2 - ( p  . k ) 2 / k 2 )  

2 7  

A second type of confluence can occur at ko = 0 = po* [ ( p  - k ) 2  + m2]1'2 and is visibly 
non-covariant. It can be avoided if the integral (8a), which is a function of p 2  and po,  is 
continued to p i  < m2, and this means that we are ultimately evaluating ( 8 a )  for 
imaginary values of lpI in order to avoid non-covariant discontinuities. The final results 
can be continued to real values of IpI if any singularities are correctly circumvented 

t In this context it is essential to note that the mass-shell element Sm2 or lT(m*, p o ,  m 2 )  is in fact independent 
of P o .  
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by the ie prescriptions. In (Sa) the integration limits are 

ko+= ( p 2 - m 2 ) / 2 ( p o ~ I p l )  
and 

Upon changing variable in (7) from ko to U, by means of the substitution 

the integral equation for the spectral function p simplifies to 

It is by no means trivial to solve because of the complicated U dependence entering 
within the non-covariant argument of p. However, in the infrared limit it does become 
amenable because W 2 +  WIZ+ m 2  on the right of (9). Therefore 

P o  PO+IPl 
/PI Po-IPl 

( W z  - m2)p(  W 2 ,  p o )  + d Wt2p( W t 2 ,  P O ) (  -2 +- In (-)) 
In the same limit, l p l / p ~ +  i(m2/po2 - 1)l” = ib, and we readily obtain the answer 

(11) 
which can be compared? with the covariant gauge result (Hagen 1963, Zwanziger 1975) 

(12) 
The propagator A( p )  behaves similarly. At this level, the non-relativistic character of 
the axial gauge is exhibited by the nature of the exponent combination 

p(w2, b ) = ( ~ 2 - ~ 2 ) - l + ( e 2 / 2 r r 2 f ( - l + b - l  tan-1 b )  

p (  w2, a )  I: (w2 - m 2 ) - l + e 2 ( ~ - 3 ) / 8 r r 2  

1 

(b-’ tan-’ b - 1) = du[ l  + u 2 ( p 2 / ( p .  n ) ’ -  1)I-l. (13) 

Of course, we cannot expect things to remain so simple an appreciable distance away 
from the mass shell. 

Io 

3. Spinor electrodynamics 

Here we are faced with integral equations for three spectral functions in general. This 
can be understood by setting 

P + Y .  npo=c(W)(WpI(W2,p.  n ) + m p z ( W 2 , p .  n ) + y .  n p .  np3(W2,p .  n ) )  

when (26) can be rewritten in the more conventional Lehmann form 

t The Yennie gauge a = 3 finds its parallel in p . n + m for the axial gauge. 
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where p l ,  pz andp3 are even in W (and also p . n in fact). These three pi become coupled 
via the Dyson-Schwinger equation 

2-' = S ( p ) ( y .  p - mol- ie d4k S ( p ) T i ( p ,  p - k ) S ( p  - k ) D " ( k ) y , ,  

which in gauge approximation reads 

X ( p ( W  P O )  + yopo(W2, P O )  + P ( W  Po-ko) + ~ o p o ( W ~ ,  p o - k o ) ) .  (15) 

To obtain the solutions for p, let C ( p ,  m )  stand for the lowest-order self-energy in the 
axial gauge for a fermion of mass m. After mass renormalisation, we interpret 

1 Im C( W' ,  po ,  m )  dW' 
V p , m ) =  - ( Y . p - - m ) -  

l~ ( y . p -  W ' ) ( W ' - m ) '  I 
Now, in what follows, we shall need information about Im C. For po2 < m 2  we have a 
covariant discontinuity in the self-energy?, and it is easy enough to arrive at the answer 

Im Z=(e2/87r2) d4k S+(k2)  S+[ (p -k )2 -m21y i (S i j -k ik , lk2 ) [ ' y .  ( p - k ) - m l y ,  I 
ko+ 

dko Im E k o ( P ,  Po ,  m). 
j k o -  

Actually we shall not require the full Im C k o ,  but only the integrated form 

( 1 6 b )  
In terms of the self-energy, the renormalised form of the equation (15) can be 

rewritten as 

+ YoPo( w'2,  Po)  + P (  W' ,  Po - ko) + YoPo( w2, po  - ko)) .  

This is directly comparable with ( 5 )  after renormalisation. In fact, the imaginary-part 

t The fermion self-energy graph has been computed dimensionally by Frenkel and Meuldermans (1976) and 
more recently by Konetschny (1977), who has also demonstrated explicitly the equality Z1 = Z z ,  thereby 
confirming earlier calculations (Delbourgo er 1974) 
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analogue of (7) is the integral equation 

1 
= - d W’ dko(p( W’, P O )  + YOPO( W’2, P O )  + P (  W’,  P O  - ko) 

2rr 

+ yop0( wt2, P O  - ko)) Im z k o (  W, P O ,  w’)/(w - W .  (17) 

We can change variable, as in the scalar case, from ko to U. It becomes a useful 
substitution only in the infrared limit, whereupon 

x( - l+--  tan-’b ( W 2  + W”)( po2 - W 2 )  

e2 m tan-’ b 
( - 1 +T) 2 r 2  ( m  + ~ 0 ~ 0 )  

4 w4 
W 

dW’(p(W‘, P O )  + YOPO(W’~ ,  P O ) )  (18) 21- 

using the old notation b 2 = p 2 / p O 2 - 1 .  Equation ( 1 8 )  is easy to solve. One merely 
introduces projections 

P + YOPO = 1(1  + y o b +  +tu - Y o b -  

to get the uncoupled differential equations 

The arbitrary overall constants R, have to be fixed equal to give the free propagator as 
e2+0.  To this leading order as p 2 +  m 2  we thereby obtain 

This has been rewritten rather more neatly as equation (4) in the introduction. All we 
know about the normalisation factor is that R ( p o ,  e )  = 1 when e = t* = 0, to be able to 
recover the undressed propagator as the interaction vanishes. If one expands (20) in 
powers of [*, one recovers the perturbative answer for S,  as can be easily checked. 
Observe too the close similarity between (19) and ( 1 1 ) .  

Without having studied the counterpart equations for quantum chromodynamics, 
i t  is difficult to hazard a guess about the behaviour of the gluon (and quark) propagator 
in the infrared. However, it would be most disappointing if one found that the gauge 
technique merely served to exponentiate the lowest-order perturbation answer without 
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supplying additional l / q 2  dependence (Pagels 1977), for it would mean that the 
longitudinal components of the vertex function-which are not determined by the 
gauge identities-are responsible for the conjectured confinement. 

Appendix 

To understand how the renormalisations are carried out in 9 2 ,  as well as in 9 3, consider 
the simpler situation in which a covariant gauge is chosen. Then the complete scalar 
propagator equation is 

-ie2A(p) 1 d 4 k r W T ( p ,  p - k ) D @ ’ ” ( k ) A ( p  - k)(2p - k), 

+photon tadpole term 

+ 2 e 4  1 T , , ( p ,  - k ; p ;  k ’ ) D W A ( k ) D ” ” ( k ’ )  d4k’d4p’ A ( p ’ )  A ( p )  (A . l )  

where k’”TFT=O. Thus TWT is the transverse part of r not contained in ( 3 a )  and 
undetermined by the gauge identities; it is, however, related to the other Green 
functions through the coupled integral equations of the theory. Note that r,’ multi- 
plies a term of order e 2  and is itself at least of order e2 since it represents a quantum 
correction. As we shall be concerned with the absorptive part in what follows, the 
tadpole graph can be forgotten-it vanishes anyhow in the context of dimensional 
continuation. 

It is known how to renormalise (A . l )  order-by-order in perturbation theory. Hence 
as an equation for the renormalised absorptive part p, the dependence on the cut-off 
must disappear in the end if only renormalised Green functions are involved. Neglec- 
ting the 2-y term 2e4 r W v .  . . , which is softer in the infrared than the rest: (and which 
does not arise in the spinor electrodynamics anyway), the absorptive part of (A. 1)  reads 

p(w2) 1 
( p 2  - mo2)p( p 2 )  = I I ( p 2 ,  W2)+-Im(A(p)nT(p2)) (A.2) 

ir 7T 

As in the text n(p2, W2) refers to the lowest-order (e’) self-energy for a meson mass W, 
but IIT is the self-energy contribution arising from transverse TFT and is of order e4  at 
least. Now the gauge-independent self-mass 

am2 = mO2--m2 = -Re n ( m * ,  m 2 ) +  O(e4). 

Therefore (A.2) reduces to 

( p 2 -  m 2 + R e  I I ( p 2 ,  p2)-Re II (m2,  m 2 ) ) p ( p 2 )  

t I t  can be taken into account i f  necessary as in Delbourgo (1977) 
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The assumption that 

n(p2, m 2 )  = - 

and the definition that 

imply that there is a logarithmic infinity in ( I I ( p 2 ,  p 2 ) - - I I ( m 2 ,  m') ]  of the form 

e 2 ( p 2  ln(A2/p2-m2 ln(A2/m2)) 

causing a term, involving a cut-off A2,  of order e4  to appear on the left-hand side of 
(A.3). Because such cut-off dependence does not appear anywhere on the right, except 
in Im ( A ( p ) I I T ( p 2 ) ) ,  it must necessarily cancel against it, for the remainder of the 
equation involves finite renormalised quantities. (Observe that IIT is just of the right 
order in e 2  to accomplish this, showing that this phenomenon cannot be accidental.) 
Hence the renormalised integral equation for p simplifies to 

2 

( p 2 - m 2 ) p ( p 2 )  = 1 d W 2  p (  W 2 )  1 m p ~ ~ & ~ 2 ) + f i n i t e  contributions coming from TT. 

In the initial gauge approximation these transverse components are discarded alto- 
gether, and in the end the integral equation for the initial p is obtained from (A.2) by 
replacement of mo2 with m2 and reinterpretation of I l ( p 2 ,  m 2 )  as the once subtracted 

Im II( W 2 ,  m 2 )  d W 2  
(w2-m2)(w2--p2)' 

The manipulations which lead from (5) to (7) for the axial gauge are almost the same 
apart from the fact that po ,  which acts as the gauge parameter, makes an explicit 
appearance everywhere and sometimes prevents certain of the energy integrals from 
being carried out. 
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